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1.0 Introduction 

 In a world where systems are getting ever more complex, the efficient usage and 

allocation of resources becomes important to maximize consumer and resource efficiency. In 

the 1600s, de Fermat proposed a problem to Evangelista Torricelli where the objective was to 

find a point (known as the Fermat Point) that minimizes the sum of distances from it to three 

arbitrarily chosen points. This simple problem, known as the Fermat Torricelli problem, 

unwittingly spawned a rich library of literature with this idea of minimizing distances, or 

costs. A class of problems known as facility location problems investigates the optimal 

placement of facilities to minimize some sort of metric (Litoff, 2015). Specifically, the k-

medians problem investigates optimal sites for placing facilities, or medians, such that the 

sum of distances from each client (an arbitrary set of points) to the nearest median is 

minimized (Durocher, 2006). The k-median problem in two dimensions remain NP-hard to 

compute (Karive & Hakimi, 1979), and it is unknown whether the problem with a fixed 

number of medians (like the generalized Fermat-Torricelli problem) is in the class NP as no 

algorithm has been found that can compute the exact location of even 1 median (Durocher, 

2006). As all the literature on the generalized Fermat-Torricelli problem has been on finding 

more efficient approximation schemes, it is worthwhile to attempt an exact solution for this 

problem. Thus, I have been led to my research question, is an analytical solution possible 

for the generalized Fermat-Torricelli Problem?     
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1.1 Scope and Methodology 

As the facility location problems are typically investigated at the graduate or post-

graduate level, as a high school student, the mathematics required to understand the 

extensions of these problems are far beyond my reach. Therefore, to reduce the difficulty of 

the math involved but still provide a non-trivial investigation into the topic, this paper will 

focus on finding the cartesian coordinates of a point in a 2-dimensional Euclidean plane that 

minimizes the sum of Euclidean distances to a 2-dimensional set of arbitrary distributed k 

points. To build up to the focus of this paper, I will start from the simplest case of facility 

location problem, the Fermat Point. First asked in the 1600s by Italian mathematician de 

Fermat, the Fermat Point is one such that the sum of its distances to the 3 vertices of an 

arbitrary triangle is minimized (de Fermat, 1643). I will discuss 2 distinct approaches to the 

problem—geometrically and algebraically. Next, I will expand my scope to include four 

vertices, and discuss if the approaches outlined in section 2 can apply to this case. Lastly, I 

will extend this discussion even further to five points and beyond.  
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1.2 Definitions and Terminology 

Durocher (2006) notes that there are numerous names assigned to the variants of facility 

location problems.1 The solution of the Fermat-Torricelli Problem is known as the Fermat 

point. Hence, for the purposes of this paper, the point k that minimizes the sum of Euclidean 

distances from it to an arbitrary, not necessarily unique, number of cartesian points P in two 

dimensions will be referred to as Fermat point for P vertices. For example, the point that 

minimizes the sum of distances from itself to four arbitrary points is called the Fermat point 

for 4 vertices. However, the Fermat point for P vertices will sometimes be referred to simply 

as the Fermat point for convenience. 

 

2.0 The Fermat-Torricelli Problem 

There are many different solutions to the Fermat-Torricelli Problem, but I have chosen 2 

that characterize vastly distinct approaches using the different disciplines of math. 

 

A formal definition for the Fermat Point can be defined as follows: given 3 fixed points 

A, B, and C, the Fermat Point F minimizes the function: 

𝑑 = |AF|  + |BF|  + |CF| (Fig. 1) 

 
1 This can be found in section 2.4.2 
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Figure 1: visualization of the Fermat point 

 

2.1 Physical Approaches 

It must first be noted that there are ways that one can ascertain the Fermat Point 

using physical devices. One of the most popular methods is through utilizing soap films and 

their property of minimizing free energy by minimizing surface area. 

 

Figure 2: Soap bubbles naturally create Fermat points. Obtained from Glassner (2000) 
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2.2 Simpson’s Geometric Solution 

The solution for the Fermat Point was initially found by Italian mathematician 

Evangelista Torricelli, to whom the problem was directed to. There are many other geometric 

constructions for the Fermat Point (Bogolmony, n.d.), but Simpson’s construction2 will be 

presented as I consider it the most elegant proof. Similar proofs were presented by Park and 

Flores (2015), Bogolmony (n.d.), and more, but the following is my own interpretation. We 

distinguish between two cases where the arbitrary triangle has all angles < 120˚ or one angle 

≥ 120˚ for reasons that will become apparent soon. 

 

2.2.1 <120˚ Case 

Construct an arbitrary triangle ABC with angles less than 120˚ (The case of 120˚ 

will be examined later). Consider an arbitrary point F and connect it with vertices A, B, and 

C. In this set up, AF + BF + CF is the distance metric. Rotate ΔABF 60˚ around B and label 

the new vertices A’ and F’ (Fig. 3). 

 

 
2 Bajaj, 1988 
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Figure 3: rotation of ΔABF 

 

Notice that by construction, A’F’ = AF, BF’ = BF, and ∠F’BP = 60˚. Since ΔF’BF 

is isosceles and ∠F’BF = 60˚, ΔF’BF is an equilateral triangle. Thus, BF = F’F. Recall d = 

AF + BF + CF. This means that d also equals A’F’ + F’F + CF. In other words, it is the 

distance of the path A’F’PC (Park and Flores, 2015). Notice, however, that ||A’C|| is 

minimized when A’F’PC is a straight line, since A’ is a fixed point. Therefore, F lies on the 

line A’C. It should also be noted that ΔA’BA is equilateral since A’B = AB and ∠A’BA = 

60˚ by construction (Fig. 3). 

 

The same argument can be made rotating ΔBCP around C and ΔACP around A. 

Since each of the lines denote the minimum distance, and the Fermat Point lies on such a line, 

the Fermat Point must lie on all three lines. Therefore, they concur. Consequently, the 
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Fermat Point is located at the intersection of the lines connecting the vertices of triangle 

ABC to the vertices of its external equilateral triangles (Fig. 4).3 

 

 

Figure 4: The Fermat Point lies at the intersection of A’C, BC’, and AB’.  

 

But what if one of the angles of the original triangle 

is greater or equal to 120˚? Using the compass and ruler 

method discussed above, the Fermat Point would turn out 

to be outside of the triangle (Fig. 5). The solution will be 

briefly addressed in the next subsection.  

Figure 5: F lies outside of the triangle. 

 
3 Notice that since ∠BFF’ = 60˚ by construction, ∠BFC = 180 – 60 = 120˚ and ∠AFB = 180 – 60 = 120˚. Thus, ∠AFC 

= 360 – 120 – 120 = 120˚. Hence, a property of the Fermat Point is that it forms 120˚ angles with the vertices of the triangle.  
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2.2.2 The ≥ 120˚ case 

For the 120˚ case, the constructed Fermat Point will 

lie on the vertex with the 120˚ angle (Fig. 6). For angles 

greater than 120˚, it can be seen that placing the Fermat 

Point on the vertex with the >120˚ angle gives a lower 

total distance than where the compass and ruler 

construction dictates. And placing the point on said 

vertex turns out to be precisely the Fermat Point for 

angles greater than 120˚ (Park and Flores, 2015).4  

Figure 6: F converges to A    

2.2.3 Confirmation of 2.2 Using Viviani’s Theorem 

Park and Flores (2015) give a proof for the Fermat Point using Viviani’s Theorem. First, 

make equilateral triangle DEG by drawing perpendicular lines from AF, BF, and CF where F 

is the supposed Fermat Point found in section 2.2 (Fig. 7). Select an arbitrary point F’ and 

draw A’ F’, B’F’, C’F’ such that these three lines are perpendicular to each corresponding 

side of ΔDEF (Fig. 7). Notice that A’F’ ≤ AF’, B’F’ ≤ BF’, and C’F’ ≤ CF’ as AF’ is the 

hypotenuse of ΔA6’F’ while A’F’ is one of the side lengths, etc. Adding up the terms gives 

 
4 A more detailed proof of this can be found in Park and Flores (2015). 
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A’F’ + B’F’ + C’F’ < AF’ + BF’ + CF’ (AA’F’, BB’F’, CC’F’ will always form right 

triangles with AF’, BF’, CF’ as the hypotenuses unless A’, B’, C’ = A, B, C). 

 

 

Figure 7: Viviani’s Theorem states that the sum of the lengths of the dotted lines equal the 

sum lengths of the solid gray lines. 

 

Now, Viviani’s theorem states that the sum of the lengths of perpendicular line 

segments from any interior point of an equilateral triangle is equivalent to the length of its 

altitude (Bogolmony, n.d.). Thus, 

AF + BF + CF = height of triangle = A’F’ + B’F’ + C’F’ 

Substituting into the previous inequality gives 

AF + BF + CF < AF’ + BF’ + CF’ 

With equality iff F = F’. This leads to the conclusion that F is the Fermat Point. It is 

important to note that another consequence of this result is that the Fermat Point is unique. 
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2.4 Algebraic Solution to the Fermat Point 

Hajja (1998) defines the fixed points P1, P2, and P3 to have the coordinates (x1, y1), (x2, 

y2), (x3, y3) respectively, and the Fermat Point with coordinates (x, y) minimizes the function 

𝑓(𝑥, 𝑦) = ∑ √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

3

𝑖=1

 

However, this notation is slightly confusing as will become apparent shortly, so I will 

call the coordinates of P1, P2, and P3 to be (a1, b1), (a2, b2), and (a3, b3): 

𝑓(𝑥, 𝑦) = ∑ √(𝑥 − 𝑎𝑖)2 + (𝑦 − 𝑏𝑖)2

3

𝑖=1

 

Using conventional optimization methods, we take the partial derivatives of the function 

and equate them to 0. This method is extensively employed by many such as Hajja, Simons, 

Escobar-Villagram, etc. 

𝜕𝑓

𝜕𝑥
= ∑

𝑥 − 𝑎𝑖

√(𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)

2

3

𝑖=1

= 0 

𝜕𝑓

𝜕𝑦
= ∑

𝑦 − 𝑏𝑖

√(𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)

2

3

𝑖=1

= 0 

These two equations can then be multiplied by ∑ (𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)23

𝑖=1 , isolated for 

one of the like multiples of the two equations, set equal to each other, then regrouped to 

produce these three polynomial equations: 

((𝑥 − 𝑎2)(𝑦 − 𝑏1) − (𝑥 − 𝑎1)(𝑦 − 𝑏2))2

((𝑥 − 𝑎3)(𝑦 − 𝑏1) − (𝑥 − 𝑎1)(𝑦 − 𝑏3))2
=

(𝑥 − 𝑎2)2 + (𝑦 − 𝑏2)2

(𝑥 − 𝑎3)2 + (𝑦 − 𝑏3)2
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((𝑥 − 𝑎1)(𝑦 − 𝑏2) − (𝑥 − 𝑎2)(𝑦 − 𝑏1))2

((𝑥 − 𝑎3)(𝑦 − 𝑏2) − (𝑥 − 𝑎2)(𝑦 − 𝑏3))2
=

(𝑥 − 𝑎1)2 + (𝑦 − 𝑏1)2

(𝑥 − 𝑎3)2 + (𝑦 − 𝑏3)2
 

((𝑥 − 𝑎1)(𝑦 − 𝑏3) − (𝑥 − 𝑎3)(𝑦 − 𝑏1))2

((𝑥 − 𝑎2)(𝑦 − 𝑏3) − (𝑥 − 𝑎3)(𝑦 − 𝑏2))2
=

(𝑥 − 𝑎1)2 + (𝑦 − 𝑏1)2

(𝑥 − 𝑎2)2 + (𝑦 − 𝑏2)2
 

(see Appendix 2.4 for the algebraic steps) 

Without loss of generality, the number of parameters can be reduced from 6 to 3 by 

setting point P1 at the origin, and point P2 on the x-axis, as the general solution can be 

obtained by simple transformations. Hence, 

(𝑎1,  𝑏1) = (0, 0)   (𝑎2, 𝑏2) = (𝑎2 , 0) 

 

Figure 8: fixing a vertex at the origin and another on the x-axis 

 

Through a lengthy and tedious process of algebraic manipulation (and with the aid of 

computer software), Escobar-Villagram et. al obtains the following equations for isolated x 

and y: 

𝑥 =
𝑎2(√3𝑎3 + 𝑏3)(a2 + 𝑎3 + √3𝑏3)

2√3(𝑎2
  2 − 𝑎2𝑎3 + 𝑎3

  2 + 𝑏3
  2 + √3𝑎2𝑏3)

 

𝑦 =
𝑎2(√3𝑎3 + 𝑏3)(√3(𝑎2 − 𝑎3) + 𝑏3)

2√3(a2
  2 − 𝑎2𝑎3 + 𝑎3

  2 + 𝑏3
  2 + √3𝑎2𝑏3)
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 Escobar-Villagram claims that these formulas work for triangles with “interior 

angles no greater than 120˚”. The next section investigates the validity of this claim.  

 

2.4.1 Confirmation through Random Sampling 

This section will attempt to investigate if the algebraic solution holds true for randomly 

generated triangles. A Python program is written that randomly generated the coordinates 𝑎2, 

𝑎3, and 𝑏3, and checked if plugging the coordinates of the Fermat Point produced into the 

two partial derivative equations returns 0.5 (See Appendix for the code). 

  

 The code can be found in the Appendix, but here is a brief overview of the 

workflow: 

1. 3 random coordinates with integer values between 1 and 1 trillion are generated. 

2. These coordinates were checked to see if they generated a valid triangle. 

3. If not, random coordinates are generated again. 

4. The coordinates are then plugged into the partial derivative equations. 

5. A message will be raised if the equations do not equate to 0. 

6. These steps are repeated 100 million times. 

 
5 Seen in section 2.4 
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For the < 120˚ and 120˚ cases, none of the samples generated violated the partial 

derivative equations. However, for the > 120˚ case, none of the samples generated satisfied 

the equations. This correlates to the findings in section 2.2. 

 

3.0 The Case of Four Points 

To tackle the problem of four points, the same methods used for the original three 

points can be considered. However, we once again distinguish the problem into two cases. 

We define the “floating case” as the case comprised of a convex quadrilateral and the 

“absorbed case” as the case dealing with concave quadrilaterals. The kinematic method does 

not seem to have any applications besides confirming what is already known (that the Fermat 

point is indeed what it claims to be) and thus will not be discussed in future sections. 

 

3.1 Geometric method 

Fagnano (1775) found the geometric solution for the Fermat Point to be the 

intersection of diagonals of the quadrilateral if it were convex (Fig. 9), and the concave 

vertex itself if the quadrilateral was concave (Fig. 10). The former case is readily proven with 

a simple application of the triangle inequality. 

Let PQRS be any arbitrary quadrilateral in ℝ2. Let 𝑈 be a point such that 𝑈 lies 

on the intersection of the diagonals of 𝑃𝑄𝑅𝑆 (Fig. 9). Let 𝑋 be an arbitrary point. By the 

triangle inequality,  



 16 

𝑃𝑈 +  𝑈𝑅 =  𝑃𝑅 ≤  𝑃𝑋 +  𝑋𝑅 

and  

𝑆𝑈 +  𝑈𝑄 =  𝑆𝑄 ≤  𝑆𝑋 +  𝑋𝑄 

Adding the two inequalities together yields  

𝑃𝑈 +  𝑈𝑅 +  𝑆𝑈 +  𝑈𝑄 ≤  𝑃𝑋 +  𝑋𝑅 +  𝑆𝑋 +  𝑋𝑄, 

With equality iff 𝑈 =  𝑋.  

 

Figure 9: Visual representation of the above proof. 

 

Figure 10: The Fermat point of a concave quadrilateral is the concave vertex. 

For the concave case, we differentiate between the case where X is outside of PQR 

and when X is in PQR. 
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Case 1: X is outside of PQR (Fig. 11) 

Theorem: For any arbitrary point X, there is always a point Y whose sum of distances is less 

than that of X. 

Proof:  

Firstly, if X is outside of PQR, there is a line that separates X from PQR. Find the orthogonal 

projection of X on the line and label it Y. By cosine law,  

𝑋𝑄2 = 𝑋𝑌2 + 𝑌𝑄2 − 2(𝑋𝑌)(𝑌𝑄)𝑐𝑜𝑠𝜃 

Since 𝜃 ≥ 90˚ by construction,  −2(𝑋𝑌)(𝑌𝑄)𝑐𝑜𝑠𝜃 ≥ 0 and 𝑌𝑄2 > 0.  

Therefore, 

𝑋𝑄2 > 𝑌𝑄2 

𝑋𝑄 > 𝑌𝑄 

The same argument can be made for XP, XR, and XS. Thus,  

𝑋𝑃 + 𝑋𝑄 + 𝑋𝑅 + 𝑋𝑆 > 𝑌𝑃 + 𝑌𝑄 + 𝑌𝑅 + 𝑌𝑆 

Consequently, X has to be inside PQR. 
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Figure 11: XQ is strictly greater than YQ. 

 

Case 2: X in PQR 

For any point X inside triangle PQR, S is a point inside PQX, P and Q are two vertices of an 

arbitrarily named PQR. Then, extend XS to meet PQ at a point Y. By triangle inequality, 

𝑸𝑺 ≤ 𝑺𝒀 + 𝒀𝑸 

𝑷𝑺 + 𝑸𝑺 ≤ 𝑷𝑺 + 𝒀𝑺 + 𝒀𝑸 = 𝑷𝒀 + 𝑸𝑿 − 𝑿𝒀 

𝑷𝒀 ≤ 𝑷𝑿 + 𝑿𝒀 

𝑃𝑌 + 𝑄𝑋 − 𝑋𝑌 ≤ 𝑃𝑋 + 𝑋𝑌 + 𝑌𝑄 = 𝑃𝑋 + 𝑄𝑋 

Therefore, 

𝑃𝑆 + 𝑄𝑆 ≤ 𝑃𝑋 + 𝑄𝑋 

𝑅𝑆 ≤ 𝑅𝑋 + 𝑆𝑋 
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Adding up gives 

𝑃𝑆 + 𝑄𝑆 + 𝑅𝑆 ≤ 𝑃𝑋 + 𝑄𝑋 + 𝑅𝑋 + 𝑋𝑆 

Since 𝑆𝑆 = 0 we have 

𝑃𝑆 + 𝑄𝑆 + 𝑅𝑆 + 𝑆𝑆 ≤ 𝑃𝑋 + 𝑄𝑋 + 𝑅𝑋 + 𝑋𝑆 

As a result, S is the Fermat point for a concave quadrilateral. 

 

Figure 12: S is the Fermat Point for the concave case. 

  

3.2 Algebraic method 

Using the methods of Escobar-Villagram et. al, the general expression for a convex 

quadrilateral can be derived. We arrive at the two partial derivative equations that equate to 

0: 

𝜕𝑓

𝜕𝑥
= ∑

𝑥 − 𝑎𝑖

√(𝑥 − 𝑎𝑖)2 + (𝑦 − 𝑏𝑖)2

4

𝑖=1

= 0 

𝜕𝑓

𝜕𝑦
= ∑

𝑦 − 𝑏𝑖

√(𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)

2

4

𝑖=1

= 0 
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However, expanding out the radicals do not simplify nicely to the 3 (in this case, 4) 

polynomial equations, and trying to expand out the roots yield a very large polynomial of 

degree 12. The dimension reduction tricks used by Escobar-Villagram were not applicable to 

the case of 4 points, and therefore it was concluded that isolating for x and y was not feasible. 

Then, we tried to perform a few simplifications to the questions by restricting the 

quadrilateral to a parallelogram, trapezium, and a right-angled trapezium respectively. This 

sets a few conditions as illustrated below. 

Parallelogram Trapezium Right-angled trapezium 

𝑎3 = 𝑎2 + 𝑎4 

𝑏4 = 𝑏3 

𝑎1 = 𝑏1 = 𝑏2 = 0 

𝑏4 = 𝑏3 

𝑎1 = 𝑏1 = 𝑏2 = 0 

𝑏4 = 𝑏3 

𝑎1 = 𝑎4 = 𝑏1 = 𝑏2 = 0 

 

Figure 13: constructions of each quadrilateral given above constraints 

 

 However, even after substituting in the appropriate constraints, Wolfram 

Mathematica was unable to solve the equation after 2 hours.  

 However, this does not mean that an equation solution to the Fermat point cannot be 

obtained. By applying the results from the geometric solution (the fact that the Fermat point 
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occurs at the intersection of the diagonals of the quadrilateral), one can obtain the equation 

for the floating case quite easily. 

  

 We start by defining the vertices of the convex quadrilateral in the same notation as 

Section 2.4:  

(𝑎1,  𝑏1), (𝑎2,  𝑏2), (𝑎3,  𝑏3), (𝑎4,  𝑏4) 

Using the same restrictions,  

(𝑎1,  𝑏1) = (0, 0)   (𝑎2, 𝑏2) = (𝑎2 , 0) 

 

Figure 14: restricting two coordinates of a convex quadrilateral 

 

First, obtain the linear equations of the two diagonals in point-slope form: 

𝑙1: (𝑦 − 0) =
𝑏3

𝑎3
(𝑥 − 0) 

𝑙2: (𝑦 − 0) =
𝑏4

𝑎4 − 𝑎2
(𝑥 − 𝑎2) 
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Next, equate the two together and isolate for x.6 

𝑏3

𝑎3
𝑥 =

𝑏4

𝑎4 − 𝑎2
(𝑥 − 𝑎2) 

𝑥 =
𝑎2𝑎3𝑏4

𝑎2𝑏3 − 𝑎4𝑏3 + 𝑎3𝑏4
 

𝑦 =
𝑎2𝑏3𝑏4

𝑎2𝑏3 − 𝑎4𝑏3 + 𝑎3𝑏4
 

Substituting these for x and y in the original partial derivative equations and plugging in 

random coordinates for a convex quadrilateral, we find out that the derived equations agree 

with the original partial derivative equations (Fig. 15). 

 

Figure 15: Plugged in coordinates for a square and a random quadrilateral. Mathematica 

returned true, showing that the results agree with the partial derivative equations. 

 As for the absorbed case, the solution is trivial. Since the Fermat Point is located at 

the concave vertex, the equations are merely 

𝑥 = 𝑎𝑣𝑒𝑟𝑡𝑒𝑥  

𝑦 = 𝑏𝑣𝑒𝑟𝑡𝑒𝑥  

 
6 Some steps are omitted for readability. Those can be found in the Appendix. 
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 It must be noted that the equations for the floating case do not work for the absorbed 

case as the diagonals of a concave quadrilateral do not intersect with each other. If one were 

to extend the diagonal to make the two lines to intersect, that intersection is not the Fermat 

point, by a similar proof to the ≥120˚ case. 

 

Figure 16: the diagonals of a concave quadrilateral do not intersect at the Fermat point. 

 

4.0 Five Points and Beyond 

4.1 Geometric Method 

The Fermat point of 5 vertices is not constructible (Bajaj, 1998). In order to explain 

why it is not, we first consider the set of all points in a two-dimensional plane we can 

construct using an unmarked ruler and compass. Any potential geometric method using a 

ruler and compass can only return such points by definition. Therefore, if we can show that 

the Fermat point for 5 vertices is not such a point, we have shown that we can never 

find a geometric construction for this point. 
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4.1.1 Constructible numbers 

 To begin the section, a few definitions and scopes must first be clarified. 

  

Definition: The geometric construction method referred to in this paper constitutes of an 

unmarked straight edge and a compass. That is, in a two-dimensional plane, a line can be 

drawn between any two points, and a circle can be drawn around any point. It ought to be 

noted that the radius of this circle is determined by the center of the circle and a point on the 

line that intersects with the circle.  

 

Definition: We start by drawing two arbitrary points, labelled (0,0) and (1,0), drawing line L 

through them. A real number 𝑟 is constructible iff there is a finite sequence of straightedge-

compass actions that can be used to create a point 𝑃 equal to 𝑟 (Bartlett, 2014).  

 

 Draw a circle C around (1,0) that passes through (0,0), yielding two intersections: 

(0,0) and (P,0). By the properties of a circle, the distance from (0,0) to (P,0) is equal to twice 

radius of C, and since the distance from (0,0) to (P,0) is 1, P must be (1+1,0) = (2,0). 



 25 

 

Figure 17: Construction of (2, 0). 

 

 This allows us to prove: 

Theorem 1: All points in the form (k, 0) where k is an integer are constructible. 

Proof: 

We prove by induction. Having assumed that (0, 0) and (1, 0) are constructible, we now 

assume that (k,0) can be constructed for 1 ≤ 𝑘 ≤ 𝑛. Now, draw a circle C around (k,0) 

passing through (k-1, 0). As in the first example, C intersects L at a distance 2 from (k-1, 0), 

namely (k-1+2, 0) = (k+1, 0). Hence, (k+1, 0) can be constructed if (k, 0) can be constructed. 

Given that this premise is true for n = 1, k, and k+1, by the principle of mathematical 

induction, the premise is true for all positive integers. 

 Negative integers are formed by applying the same procedure in the opposite 

direction. 
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Figure 18: Visual representation of the proof by induction. Taken from Bartlett (2014). 

As it turns out, there are a few things that we can construct geometrically: 

1. Perpendicular lines. 

2. Parallel lines. 

3. If a and b are constructible, (a, b) is constructible. 

4. If (a, b) and x≠0 are constructible, then so are (xa, xb) and (a/x, b/x). 

5. Known distances can be transferred (also known as the “Non-collapsing Compass”) 

 

Figure 19: construction for perpendicular and parallel lines, as well as multiplying (a,b) by a 

constant. Taken from Bartlett (2014). 
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 It also turns out that performing basic operations (ie + −×÷) on constructible 

numbers yield numbers that are constructible themselves (Bartlett, 2014). With the above in 

mind, a few types of numbers can be seen to be constructible.  

1. As discussed earlier, integers are constructible.  

2. Through division, rationals with integer numerators and denominators are 

constructible. 

3. Square roots are constructible (Fig. 20) 

 

Figure 20: Inductive step for the construction of a square root. Taken from Bartlett (2014). 

 

4.1.2 Unconstructible numbers 

So far, a few types of numbers have been established to be constructible. But what 

kinds of numbers are not? 

Cube roots are not constructible (Janson, 2009). This is an ancient problem known as 

“Doubling the Cube” that has remained an open problem for centuries before recent advances 

in abstract algebra. Additionally, in general, nth roots are not constructible (Wantzel, 1837). 
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Bajaj proves that n ≥ 5, the situation is much more complicated. In this paper, they 

show that the Fermat point problem reduces to solving a polynomial equation. They then 

show that the roots of this equations often are non-constructible. Since the coordinates of 

such a Fermat point is unable to be constructed using a straightedge and a ruler, a geometric 

solution for the Fermat point beyond four vertices is generally impossible. 

 

4.2 Algebraic method? 

Since there are no tricks that can be exploited like for the case of 4 points, it does not 

seem possible to isolate for the coordinates of the Fermat point given current methods. With 

reference to Bajaj (1998), seeking an algebraic approach to a high degree polynomial 

equation is unfeasible. 

Since it is not possible to do this algebraically, we follow with a brief discussion on 

a few numerical methods that could theoretically be used to tackle the problem. 

 

4.3 Numerical methods 

 As suggested in 3.2, the polynomial equation of high degree. Since this is an 

equation of two unknowns, a numerical method could be used to find approximations. One 

such method is called the Runge-Kutta method. This method uses the information of the 
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derivatives of the equation at more than one point to extrapolate the solution of the next step 

(Zeltkevic, 1998). The method for calculating some 𝑦𝑛+1 given 𝑦𝑛 is shown below: 

𝑘1 = ℎ𝑓(𝑦𝑛, 𝑡𝑛) 

𝑘2 = ℎ𝑓(𝑦𝑛 +
𝑘1

2
, 𝑡𝑛 +

ℎ

2
) 

𝑘3 = ℎ𝑓(𝑦𝑛 +
𝑘2

2
, 𝑡𝑛 +

ℎ

2
) 

𝑘4 = ℎ𝑓(𝑦𝑛 + 𝑘3, 𝑡𝑛 + ℎ) 

𝑦𝑛+1 = 𝑦𝑛 +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
 

Where ℎ is an arbitrarily chosen time step and 𝑓(𝑦𝑛 , 𝑡𝑛) is the polynomial equation. 

 

  A solution can be approximated by machine learning algorithms. Consider 𝑓(𝑥, 𝑦) 

as a hilly terrain with the height as cost (aka distance). An algorithm such as SVM can follow 

the gradients to arrive at the troughs in the terrain (aka local minimums, which happens to be 

a global minimum in this problem) (Simons, 2003). 
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5.0 Conclusion 

Is an analytical solution for the generalized Fermat Point possible? Not 

geometrically or algebraically given the methods investigated in this paper. 

In this paper, we discussed an elegant geometric method to finding the Fermat Point 

discovered centuries ago, and a more complicated algebraic method. We find out that such a 

Fermat point is unique and forms 120˚ angles with the triangle vertices. 

Finding the Fermat Point for 4 vertices proved to be quite simple as well, with a 

proof by triangle inequality, it could be seen that this Fermat point is the intersection of the 

diagonals of a quadrilateral. However, trying to find isolated algebraic equations for this 

Fermat point proved extremely difficult using the algebraic approach, and could only be done 

using the abovementioned geometric property. 

Trying to generalize the Fermat point for 5 vertices or more proved to be difficult. It 

can be concluded that the generalized Fermat point cannot be constructed geometrically and 

attempting to investigate the algebraic approach was beyond the scope of this paper. 

 Only the most common geometric and algebraic methods were explored in 

this paper. Perhaps there are ways to arrive at an analytical solution to the Fermat Point via 

such methods, which is a possible direction for further research. 
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Appendix 1: Calculations for 2.4 

Let: 

𝑥 − 𝑎1 = 𝐴 

𝑥 − 𝑎2 = 𝐵 

𝑥 − 𝑎3 = 𝐶 

𝑦 − 𝑏1 = 𝑎 

𝑦 − 𝑏2 = 𝑏 

𝑦 − 𝑏3 = 𝑐 

(
𝐴

√𝐴2 + 𝑎2
+

𝐵

√𝐵2 + 𝑏2
+

𝐶

√𝐶2 + 𝑐2
= 0) × (𝐴2 + 𝑎2)(𝐵2 + 𝑏2)(𝐶2 + 𝑐2) 

(
𝑎

√𝐴2 + 𝑎2
+

𝑏

√𝐵2 + 𝑏2
+

𝑐

√𝐶2 + 𝑐2
= 0) × (𝐴2 + 𝑎2)(𝐵2 + 𝑏2)(𝐶2 + 𝑐2) 

 

𝐴√𝐴2 + 𝑎2(𝐵2 + 𝑏2)(𝐶2 + 𝑐2) + 𝐵√𝐵2 + 𝑏2(𝐴2 + 𝑎2)(𝐶2 + 𝑐2) + 𝐶√𝐶2 + 𝑐2(𝐴2

+ 𝑎2)(𝐵2 + 𝑏2) = 0 

𝑎√𝐴2 + 𝑎2(𝐵2 + 𝑏2)(𝐶2 + 𝑐2) + 𝑏√𝐵2 + 𝑏2(𝐴2 + 𝑎2)(𝐶2 + 𝑐2) + 𝑐√𝐶2 + 𝑐2(𝐴2

+ 𝑎2)(𝐵2 + 𝑏2) = 0 

 

√𝐴2 + 𝑎2(𝐵2 + 𝑏2)(𝐶2 + 𝑐2)

=
−𝐵√𝐵2 + 𝑏2(𝐴2 + 𝑎2)(𝐶2 + 𝑐2) − 𝐶√𝐶2 + 𝑐2(𝐴2 + 𝑎2)(𝐵2 + 𝑏2)

𝐴

=
−𝑏√𝐵2 + 𝑏2(𝐴2 + 𝑎2)(𝐶2 + 𝑐2) − 𝑐√𝐶2 + 𝑐2(𝐴2 + 𝑎2)(𝐵2 + 𝑏2)

𝑎
 

 

𝑎𝐵(𝐶2 + 𝑐2)√𝐵2 + 𝑏2 + 𝑎𝐶(𝐵2 + 𝑏2)√𝐶2 + 𝑐2

= 𝐴𝑏(𝐶2 + 𝑐2)√𝐵2 + 𝑏2 + 𝐴𝑐(𝐵2 + 𝑏2)√𝐶2 + 𝑐2 
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[𝑎𝐵 − 𝐴𝑏](𝐶2 + 𝑐2)√𝐵2 + 𝑏2 = [𝐴𝑐 − 𝑎𝐶](𝐵2 + 𝑏2)√𝐶2 + 𝑐2 

(𝑎𝐵 − 𝐴𝑏)2

(𝐴𝑐 − 𝑎𝐶)2
=

𝐵2 + 𝑏2

𝐶2 + 𝑐2
 

 

((𝑥 − 𝑎2)(𝑦 − 𝑏1) − (𝑥 − 𝑎1)(𝑦 − 𝑏2))2

((𝑥 − 𝑎3)(𝑦 − 𝑏1) − (𝑥 − 𝑎1)(𝑦 − 𝑏3))2
=

(𝑥 − 𝑎2)2 + (𝑦 − 𝑏2)2

(𝑥 − 𝑎3)2 + (𝑦 − 𝑏3)2
 

 

The other two equations can be obtained by isolating √𝐵2 + 𝑏2(𝐴2 + 𝑎2)(𝐶2 + 𝑐2) and 

√𝐶2 + 𝑐2(𝐴2 + 𝑎2)(𝐵2 + 𝑏2). 
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Appendix 2: Raw code for 2.4.1 

import numpy as np 

import math 

from tqdm import tqdm 

 

#cosine law function 

def angle (a, b, c): 

    return math.degrees(math.acos(round((c**2 - b**2 - a**2)/(-2.0 * a * b),6))) 

 

#check if angles less than 120˚ function 

def check (a2, a3, b3): 

    a = a2 

    b = math.sqrt((a2-a3)**2+b3**2) 

    c = math.sqrt(a3**2+b3**2) 

     

    angA = angle(a,b,c) 

    angB = angle(b,c,a) 

    angC = angle(c,a,b) 

     

    if round(angA + angB + angC,2) != 180.00: 

        return False 

    elif angA > 120.0 or angB > 120.0 or angC > 120.0: 

        return False 

    else: 

        return True 

     

 

#plug into the authors' formulas 

def fermatpoint (a2, a3, b3): 

    x = a2*(math.sqrt(3)*a3 + b3)*(a2+a3+math.sqrt(3)*b3)/(2*math.sqrt(3)*(a2**2-

a2*a3+a3**2+b3**2+math.sqrt(3)*a2*b3)) 

    y = a2*(math.sqrt(3)*a3 + b3)*(math.sqrt(3)*(a2-a3)+b3)/(2*math.sqrt(3)*(a2**2-

a2*a3+a3**2+b3**2+math.sqrt(3)*a2*b3)) 

    return (x,y) 

 

def fermatpointtrue(n): 

    for i in tqdm(range(n)): 
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        a2 = np.random.randint(1,1000000000000) 

        a3 = np.random.randint(1,1000000000000) 

        b3 = np.random.randint(1,1000000000000) 

        check(a2, a3, b3) 

 

        #generates a triangle with interior angles no more than 120˚ 

        while check(a2, a3, b3) == False: 

            a2 = np.random.randint(1,1000000000000) 

            a3 = np.random.randint(1,1000000000000) 

            b3 = np.random.randint(1,1000000000000) 

            check(a2, a3, b3) 

         

        #define side lengths. 

        a = a2 

        b = math.sqrt((a2-a3)**2+b3**2) 

        c = math.sqrt(a3**2+b3**2)     

 

        #grab coordinates of fermat point 

        x = fermatpoint(a2, a3, b3)[0] 

        y = fermatpoint(a2, a3, b3)[1] 

     

        #determine lengths of the segment joining the fermat point to each of the vertices. 

        P1 = math.sqrt(x**2+y**2) 

        P2 = math.sqrt((x-a2)**2+y**2) 

        P3 = math.sqrt((x-a3)**2+(y-b3)**2) 

 

        #find the partials 

        pdx = round(x/P1 + (x-a2)/P2 + (x-a3)/P3, 2) 

        pdy = round(y/P1 + y/P2 + (y-b3)/P3, 2)      

    

        #check if the partials equal 0. If not, (x,y) is not the Fermat Point and print the properties of such a 

configuration. 

        if pdx != 0 or pdy != 0: 

            print("number of iterations: ",n) 

            print(' ') 

            print("original coords: ", a2, a3, b3) 

            print('') 

            print("fermat point coords: ", x, y) 
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            print('') 

            print("side lengths: ", a, b, c) 

            print('') 

            print("P1, P2, P3: ", P1, P2, P3) 

            print("pdx, pdy = ", pdx, pdy) 

            return False 

     

 

fermatpointtrue(100000000) 

Nothing was printed, meaning all samples satisfied the condition for the partial derivatives to 

equal 0. 

 The code for triangles with an interior angle of 120˚ and greater than 120˚ 

respectively is the same as above but with slight modifications to the triangle generation. 
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Appendix 3: Raw calculations for 3.2 

𝑙1: (𝑦 − 0) =
𝑏3

𝑎3
(𝑥 − 0) 

𝑙2: (𝑦 − 0) =
𝑏4

𝑎4 − 𝑎2
(𝑥 − 𝑎2) 

𝑏3

𝑎3
𝑥 =

𝑏4

𝑎4 − 𝑎2
(𝑥 − 𝑎2) 

𝑏3

𝑎3
𝑥 =

𝑏4

𝑎4 − 𝑎2
𝑥 −

𝑏4

𝑎4 − 𝑎2
𝑎2 

𝑏4𝑎2

𝑎4 − 𝑎2
=

𝑏4

𝑎4 − 𝑎2
𝑥 −

𝑏3

𝑎3
𝑥 

(
𝑏4

𝑎4 − 𝑎2
−

𝑏3

𝑎3
) 𝑥 =

𝑏4𝑎2

𝑎4 − 𝑎2
 

𝑥 =

𝑏4𝑎2
𝑎4 − 𝑎2

𝑏4
𝑎4 − 𝑎2

−
𝑏3
𝑎3

 

=

𝑏4𝑎2
𝑎4 − 𝑎2

𝑏4
𝑎4 − 𝑎2

×
𝑎3
𝑎3

−
𝑏3
𝑎3

×
𝑎4 − 𝑎2
𝑎4 − 𝑎2

 

=

𝑏4𝑎2
𝑎4 − 𝑎2

𝑏4𝑎3

𝑎3(𝑎4 − 𝑎2)
−

𝑏3𝑎4 − 𝑏3𝑎2

𝑎3(𝑎4 − 𝑎2)

 

=

𝑏4𝑎2
𝑎4 − 𝑎2

𝑏4𝑎3 − 𝑏3𝑎4 + 𝑏3𝑎2

𝑎3(𝑎4 − 𝑎2)

 

=
𝑎2𝑎3𝑏4

𝑎2𝑏3 − 𝑎4𝑏3 + 𝑎3𝑏4
 

𝑦 =
𝑏3

𝑎3
𝑥 

=
𝑏3

𝑎3
×

𝑎2𝑎3𝑏4

𝑎2𝑏3 − 𝑎4𝑏3 + 𝑎3𝑏4
 

=
𝑎2𝑏3𝑏4

𝑎2𝑏3 − 𝑎4𝑏3 + 𝑎3𝑏4
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